indows NT Control Panel Applets

Juiy 1993 :
. $4.50US
- Canada $5.95+

Wmdowsl DOS

Vol. 4, No. 7

S Jou RNAL
Software Tools

G e
.“Q‘tlﬁf rERN :
. EE L L \ ‘ e
L \
_ -
» » “h g’
M a‘\ \ \ ‘ ,\ \\\\\ ‘
\ { { \\ v ¢ \ \
3 L B iV
" ' \ , -‘\ s.\\
L\ i
\ ¥
N - %
»‘\ & "‘m" W“‘
. b "’o' ..,
s AC Strmg | Y -
Extractor * . .
& A Configurable o
| Menu-Based =~ P LUS:. -
. b - & .
. - . - I Visual lmplementat:on Shadowed Popup)
i, User Interface e ey
. ‘e W Buffered Window Redraws
L] .
: ’ M 64Kb Edit Controls Turnmg Modal Dlalogs
07 g ~ .. into Modeless Dialogs' . i
: . - - ‘M Setting and Removmg Volume Labels
. B Product Spotlight: Wmdows Installatlon
, Utilities :
: M- Adding a.Path Fmder to BASIC. :
L

July 1993

Windows”7DOS o

) DEVELOPER'S JOURNAL

Cover photo by Frithjof Spalder
© The Image Bank|Frithjof Spalder 1990

WINDOWS/DOS DEVELOPER’S JOURNAL (ISSN 1059-2407) is p

Extracting Strings fromCPrograms « « « ¢ « o ¢ o« - - .6
Hard-coded strings are a major impediment to creating a foreign-language version of your software.

This program helps you move those hard-coded string constants out of your C program.
William F. Dudley, Jr.

Simplified Windows User Interfaces « - - « - - - - 19
MamsnnllVWMowspmgmdonquuimaMkbbwncusankﬂowmdnmgemmm
Hera'sanexampleofaMﬁndowspmgramwhoseuserhﬂeﬁacelspmvidadbymemsramermanamhdw.
Al Williams

BASIC Path Finding s SRR Gt iR AR ¢
BASIC can't find the path to the directory of the running executable — here’s an assembled function
that does the job.

Murray L. Lesser

Writing a Control Panel Applet for Windows BIT L sael i aioe Hasina, Sbihe. e 33
Learn how to create an NT Applet, and acquire some tips on using NT DLLs and the NT Registry
along the way.

Paula Tomlinson

Visual Implementation: Shadowed Popup Windows - « . . 49
Some Windows software (like WinHe_;p) uses shadowed popup windows, but Windows provides no

direct support for this window style. This article provides complete code for shadowed popups.
Steven Palmer

Buffered Redrawing 55
Windows requires you to repaint on demand, whenever something else covers your window.

Here'’s how you can implement your own “backing store, ” however.

Bruce Graves

W

Windows Installation Utilities . . .

A look at two tools for creating Windows installatit'm éoﬂwz;re:.Mi-croso;t 'S .Setup Tc;olla‘t and InstallSHIELD
from Stirling Technologies, Inc.

Victor R. Volkman

Windows Questions and Answers PaulBonneau - 77
A summary of the edit control memory management problem and its solutions. A clever and clean
technique for turning modal dialogs (such as the Common Dialogs) into modeless dialogs.

Tech Tips Leor Zolman 87
How to set and delete volume labels with DOS XFCB functions. GetInstanceData(): a better solution
for building single-instance Windows applications. Using dynamic format strings with printf ()

FromtheEditor « « . . . =
Source Code Availability - - . .
CallforPapers « « « « « « « =«
NewProducts . . . - « « « « « « o« o« =+ « « =
Readers'Forum..........................99
DeveloPer'sMarketplace.....................100
Advertiserlndex.........................104

d by R&D Publicati Inc., 1601 W. 23rd St., Suite 200, Lawrence, KS 66046-2743, (913) 841-1631. Second-

class postage paid at Lawrence, KS and additional mailing offices. POSTMASTER: Send address changes to WINDOWS/DOS DEVELOPER’S JOURNAL, 1601 W. 23rd St., Suite 200, Lawrence,
KS 66046-2743. Subscriptions: Annual renewable subscriptions to WINDOWS/DOS DEVELOPER’S JOURNAL are $29 US, $53 Canada and Mexi $64 Pay must be made in US
dollars. Make checks payable to Windows/DOS Developer’s Journal. GST (Canada): #129065819

Page 2 — Windows/DOS Developer's Journal July 1993

Software Tools

Extracting Strings
from C Programs

William F. Dudley, Jr.

our small CAD software company decided to modify its application programs for
users in non-English speaking countries. We were motivated not only by the desire
to give non-English speaking users a program with messages in their own language,
but also by our linker’s refusal to link the application, due to an excessive amount of
constant data (strings) in the source code. This article describes the tool we
developed to assist in converting our program to an international application.

Removing the Messages

We decided to move almost all of the strings out of the source code and into a
separate file. The application would read this file at runtime, stuffing the strings into
memory. This not only solved the problem with the linker, it also allowed our
foreign distributors to translate the messages file into their native languages, allow-
ing our software to appear much friendlier to our foreign users.

For a large application (40,000 lines) with many embedded messages, the
prospect of removing all the messages struck us as tedious at best. Our solution was
to write a message extractor, which reads a C source file and, for each message in
the file, interactively asks the user if that message should be migrated to the mes-
sage file. The message extractor remembers all the messages in the message file, so
if a message is re-used, the extractor automatically fixes the source code to use only
the one instance of the message.

We added only one module to the application - one that finds the message file
and reads it, allocating memory for each message as it goes. The application calls
this routine at startup as part of the initialization process.

The Message File

The format we chose for the message file is a robust file format that a user can
edit with a general-purpose text editor. A “record” holds each message, consisting of
three parts:

* A line with the message number and an identifying name (for debugging later
on). The identifying name consists of the module name appended with the mes-
sage number (e.g, fileio_266).

» The message itself, possibly on more than one line.

* An EOT character (ctrl-D, '\004").

William Dudley is a consultant to AT&T Bell Labs Advanced Decision Support Systems,
currently working on an Airline Schedule Planning System. He has a Masters in electri-
cal engineering from Cornell University. When not programming for profit or fun, he
can be found riding his Norton Commando (on nice days) or working on that or one
of his other bikes (on less-nice days). He can be reached electronically at 71631,737 on
Compuserve or dud@homxb.att.com on usenet.

Page 6 — Windows/DOS Developer’s Journal July 1993

The following is a fragment of a message file. The '\004' rep-
resents real ~Ds, which don’t print.

fileio_132
Warning, ROUTER couldn't open file %s for input
'\004'
fileio_133
Error, ROUTER couldn't open tmp file %s
ROUTER exiting to DOS
\004’

The Message Extractor

The message extractor (makemsg.c in Listing 1) takes zero
or more arguments on the command line. A single argument
is interpreted as the name of the message text file; otherwise
MAKEMSG prompts for it. If you supply two or more arguments,
MAKEMSG takes the second through last arguments to be the
names of C source files in which to look for messages. If you
use wildcards for the C source files, they are expanded to the
list of files matching the wildcard specification. If less than two
arguments are used, MAKEMSG prompts for the name of a C
source file.

MAKEMSG next tries to open the message text file. If suc-
cessful, it reads the file into alloc'd space (just as the applica-
tion will do at runtime). Each text record is stored in a struct
consisting of the string and its index. This index will facilitate a

i

el e

MO

OO
ORI

=]

|
|
|

FEBEELE
PR

[J Request 109 on Reader Service Card [J

Page 8 — Windows/DOS Developer’s Journal

Listing 1

makemsg.c — Source code for makemsg

~

* for “"Preparing a C application for non-English speaking users"
William F. Dudley Jr.

*

*

* Usage: makemsg msg_file c_file c_file2 . . .
* Example: makemsg msg_file ../*.c
*
*
*
*

Note: all the hooks are in place for sorting the strings for
faster searching. We are doing linear search for now, but if
speed becomes a problem, we can wire it up.

#include <stdio.h>
#include <string.h>
#include <dir.h>
#include <errno.h>

#if _ TURBOC__
#include <mem.h>
#include <alloc.h>
#elif MSC

#include <memory.h>
#include <malloc.h>
#define MAXPATH 80
#define MAXDRIVE 3
#define MAXDIR 66
#define MAXFILE 9
#define MAXEXT 5
#define EXTENSION 0x02
#define FILENAME 0x04
#define DIRECTORY 0x08
#define DRIVE 0x10
int fnsplit (char *, char *, char *, char *, char *);
void fnmerge (char *, char *, char *, char *, char *);
#endif

#define FALSE 0
#define TRUE 1
#define MAIN 1
#include "makemsg.h"

int loadmsgs (unsigned *, struct msg *, FILE *, int);

FILE *xsrc, *xold, *xnew, *xmsg, *xhdr;

char gsrc[MAXPATH], qold[MAXPATH], gnew[MAXPATH], qmsg[100] ;
char p[100], q[100], pout[100], psav[100];

int jmsg, jcomment, jquote, kquote, jprintf, Jjif;
ot 1, 3.k, V1o m, 03

main (argc, argv)
int argc;
char **argv;
{
int error = 0;
unsigned int cnt;
char qdisk[MAXDRIVE], qpath[MAXDIR], qfname[MAXFILE], qext [MAXEXT] ;
char *tok;
int exists;
int pathbits, files, argent;

/* Open message file and find highest number. &/
if (argc > 1)
strepy (qmsg, argv[1]);
else {
printf ("Msg file = ");
scanf ("%s", qmsg);

xmsg = fopen (gqmsg, "r");

if (xmsg == NULL) {
printf ("No message file %s found.\n", gmsg);
exit (9);

}

/* read existing message file into memory */
cnt = sizeof (txt)/sizeof (struct msg);
error = loadmsgs (&cnt, txt, xmsg, 1);

if (error) exit (error);

jmsg = cnt;

fclose (xmsg);

xmsg = fopen (qmsg, "a");

July 1993

Listing 1 continued

if (arge > 2) {
strepy (gqsrc, argv[2]);
files = argc - 2;

else {
printf ("Source file —> *);
scanf ("%s", gsrc);
files = 1;

for(argent = 0 ; argent < files ; argent++) {
/* first src file is already in gsrc, strcpy not needed */
/* subsequent src files need to be gotten, however */
if (argent) strepy (gqsrc, argv[argent+2]);
xsrc = fopen (gsrc, "r");
if (xsrc == NULL) {
printf ("No source file %s found.\n", gsrc);
exit (9);
}

/* strip off disk and path */ :
pathbits = fnsplit (qsrc, qdisk, qpath, qfname, gext);
frmerge (qold, NULL, NULL, qfname, gext);
/* make gnew have no drive or directory, new files made in CWD */
fnmerge (qnew, NULL, NULL, qfname, gext);
/* if source is not in another directory,
* append 'n' & 'o' to file names */
if (!(pathbits & (DIRECTORY | DRIVE))) {
strcat (qold, “o");
strcat (gnew, "n");

xnew = fopen (qnew, "w");

jcomment = FALSE; jprintf = FALSE; jif = FALSE;
while (TRUE) {

fgets (q, 128, xsrc);

if (feof (xsrc)) break;

Jjquote = 0;
kquote = 0;
if (q[o] != '#') {
for (§ = 0; q[i]; i++) {
if (!strncmp(&q[j], "printf", 6)) Jjprintf = TRUE;
if (!strncmp(&q[j], "#if*, 3)) jif = TRUE;
if (!strncmp(&q[j], "#endif", 6)) jif = FALSE;

if (q[j] == '/' && q[j+1] == '*') jcomment = TRUE;
if (q[] == '*' && q[j+1] == '/') jcomment = FALSE;

if (jprintf TRUE &% jcomment == FALSE &&

jif == FALSE && q[j] == '\"")

{
if (jquote == 0) jquote = j;
else if (kquote == 0) kquote = j;

}

}

}
if (jquote &% kquote) {
/* extract the string, save it in psav[], */
/* expand it into pout[] */
k = 0; :
for (j = jquote+l; j < kquote; j++) { psav[k] = q[i]; k++; 1}
psav[k] = 0;
for (j = 0, tok = psav; *tok ; tok++) {
if (*tok != '\\')
pout[j++] = *tok;
else {
switch (tok[1]) {
case 'n' :/* we found "\n" */
pout[j++] = '\n';
break;
case 't' :
pout[j++] = '\t';
break;
case 'v' :
pout[j++] = '\v';
break;
case 'b' :

July 1993

Windows & DOS

Programming
Tools

‘ v
New

Sourcer, s°

"Sourcer is the best disassembler
we’ve ever seen."” PC Magazine

Creates commented source code and list-
ings from binary files. Shows how programs
work with detailed comments on interrupts,
subfunctions, 1/O functions, and more. Sup-
ports all instructions to 80486 and V20/V30.

Sourcer provides the best analysis separat-
ing code and data. It automatically deter-
mines data types, uses descriptive labels for
BIOS and PSP data, and links data items
across multiple segments.

New version 5.0 makes most DOS EXE and
COM files and drivers reassemble perfectly,
byte-for-byte identical to the original!

Top professionals depend on Sourcer for the
most teliable results with the least effort.

oo for Windows

"Sourcer combined with Windows

Source should be mandatory for

looking into Windows Programs."
Sal Ricciardi PC Magazine

Windows Sourcew with Sourcer generates
detailed listings of Windows EXEs, DLLs,
SYSs, VxDs, device drivers & 0S/2 NE files.
Labels, by name, export & import function
calls, API calls like “GetFreeSpace" and more.

See the many undocumented Windows
functions used by professionals to perform
tricks that are otherwise impossible.

Comes complete with extra utilities for
resource extraction and import analysis.
Uses CodeView symbols for improved clarity.

BIOS Source

for PS/2, AT, XT, PC and Clones

The BIOS Pre-Processor m with Sourcer
creates commented listings for any BIOS
ROM in your PC. Understand how your
specific BIOS works! Adds over 75K of
comments specific to your BIOS. Identifies
multiple interrupt branches with special
labeling like "int_10_video." Fully automatic.

Sourcer-Commenting Disassembler $129.95
Sourcer w/BIOS -(save $10) 169.95
ASMtool 486 -Automatic flowcharter 199.95
ASM Checker -Finds source code bugs 99.95
Windows Source-requires Sourcer 129.95
Windows Source & Sourcer-(save $30) 229.90

Shipping: USA $6; Canada/Mexico $10; Other $18. CA
residents add sales tax. © 1993 VISA/MasterCard/COD

30-DAY MONEY-BACK GUARANTEE

1-800-648-8266 order desk

V_Communications, Inc.
4320 Stevens Creek Blvd., Suite 275-WD
San Jose, CA 95129 FAX 408-296-4441
408-296-4224

Windows/DOS Developer’s Journal — Page 9

Listing 1 continued

pout[j++] = '\b';
break;
case 'r* ¢
pout[j++] = '\r';
break;
case 'f' :
pout[j++] = '\f';
break;
case '0' : case 'l' : case '2' : case '3' :
case '4' : case '5' : case '6' : case '7' :
i=tok[3]-'0'+(tok[2]-'0")*8+(tok[1]-'0")*8;
tok += 2;
pout[j++] = (char)i;
break;
case '\\' :
pout[j++] = '\\';
break;
default :
tok—; /* don't skip 2 chars */
break;

tok++; /* because we prob. found "\n" */

}

}
pout[§] = '\0';
if (kquote-jquote < 3) {
fprintf (xnew, “%s", q);
}
else {
exists = -1;
/* is string found in existing message file ? */
for(j = 0 ; j <= jmsg ; j++) |
if(!stremp(pout, txt[j].s)) break;

/* does string exists in message file already ? */
if (j != jmsg+l) exists = txt[j].index;
if (exists >= 0)
printf ("%s: string found in msg file, #%d: Fixing.\n", gsrc, exists);
else {
/* does user want to move string out of source file ? */
Query:
printf ("\n%s\n", q);
printf ("\t\tLeave it or Fix it? "); scanf ("%s", p);
1f(pf0] == 21 || spf0] == ‘L)
fprintf (xnew, "%s", q);
continue;

}
else if (p[0] != 'f' && p[0] != 'F')
goto Query;
}

if (exists < 0) {
/* then we haven't seen this string before */
Jmsg++; /* Bump message counter. */
if (jmsg > MAX_MSGS) {
fprintf (stderr, "too many strings\n");
exit (ENOMEM);

/* now store message in bufr array */
j = strlen (pout);
txt[jmsg]l.s = calloc (j+1, 1);
if (txt[jmsg].s == NULL) {
fprintf(stderr,"can't alloc more memory, line %u\n", msg);
exit (ENOMEM);

}

strcpy (txt[jmsg].s, pout);

txt[jmsg].index = jmsg;

exists = jmsg;

fprintf (xmsg, "%d %s_%03d\n", jmsg, qfname, jmsg);
fprintf (xmsg, "%s\n\004\n", pout);

}
/* Print the line without quoted string. */

strncpy(p, g, jquote); k = jquote;
k += sprintf (p+k, "txt[%d]", exists);
for (j = kquote+l; q[il; j++) { plk] = qil; k++; }
plk] = '\o';
fprintf (xnew, "%s", p);

/* And put a comment into the code with the string. */

Page 12 — Windows/DOS Developer’s Journal

planned enhancement, sorting the
strings so that a binary search can be
used instead of the current linear one.
So far, this revision has proven unneces-
sary, since a linear search of a few
hundred strings doesn't take very long.

Next MAKEMSG runs through a loop
for each of the C source files specified
on the command line. If the source file
name has a directory component to its
name (i.e., resides in a directory other
than the current one), MAKEMSG reads
the source file, but writes a new source
file of the same name in the current
directory. If the source file is in the cur-
rent directory, MAKEMSG creates a new
source file with name XXXXn (e.g.,
eclipse.c becomes eclipse.cn). If the
text extraction goes without problems,
then the old source file is renamed to
XXXXo (e.g., eclipse.co) and the XXXXn
file gets the original name of the old
source file.

The next part of the loop decides
what constitutes a string and asks the
user to “Fix it or Leave it?" These rules
you will most likely want to customize
for your application. Our rules are fairly
simple: the string can’t be bracketed by
#if/#endif (so as to ignore most debug
printfs), cannot be in a comment, and
must start on a line with a “printf”
(which encompasses sprintf, fprintf,
and vsprintf).

once MAKEMSG detects a candidate
string, it searches the existing message
database for a copy of it. If one is
found, the source file is automatically
fixed to use the existing stored string. If
the string -is not in the database, the
user is asked to “Fix it or Leave it?" If
“Fix,” MAKEMSG adds the string to the
message base, appends the new text
record to the end of the message file,
and fixes the source file to use the
proper entry in the (future) txt[] array.
If “Leave,” MAKEMSG simply copies the
source file to the new file and cycles
back to the top of the while loop.

The Message Loader Module

The message loader module, shown
in Listing 2, searches down the DOS
PATH for the message file. After success-
fully opening the file, the module reads
each record, checks that its number
agrees with the loop counter (the file
corruption test), allocates the memory
for the string, copies the string to that

July 1993

memory location, and sets the pointer in the txt[] array to
point to the string.

The loader returns to the caller the number of the last
message read, so that if the integrity check fails, a message is
printed on the console telling the user at what line in the ¢xt
file the error occurred.

Creating Messages

once you have decided to make your messages translatable
to other languages, you have new restrictions on how you may
generate your messages. For example, the printf construct

intf("There %s %d via%s in this job.\n",
(via_countl) ? "are" : "is", via_count,
(via countl)'? Asn % Ei)s

which reports the number of items in a job, will not translate
well into other languages. You will be lucky if the target lan-
guage makes plurals as English does. You should instead have
two messages - one for the singular, and one for the plural.

In general, when writing messages, don't do anything
tricky using English grammar, spelling, or parts of speech.

Another consideration is the size of the message buffers.
our experience suggests that if you plan on producing a Ger-
man version of your program, make sure that the buffers into
which you copy your messages (using sprintf() or strcat(),
for example) are at least twice as long as needed by the

Software Developers. ..

Ask Corel, AT&T,
EXXON, Sharp,
Inset Systems, and
a thousand
others...

why they picked
LEADTOOLS for
their image
application.

They'll say from Original 39 MB compressed

to 163 K, 239:1.
document to true color

imaging, LEAD Technologies is innovative.

LEAD pioneered image compression technology that
achieves compression ratios of over 200 to 1,
constructed tools for quick integration of images into
any application, and built a toolkit with a reputation for
speed! Call for a free evaluation diskette to see for
yourself.

LEAD Technologies, Inc.
1-800-637-4699 * Fax 704-548-8161

[0 Request 161 on Reader Service Card [
Page 14 — Windows/DOS Developer’s Journal

Listing 1 continued

m = 60-strien(psav);

while (m>7) { fprintf (xnew, “\t"); m-=8; }
while (m>0) { fprintf (xnew, * *); m-=1; }
fprintf (xnew, "/* >> %s << */\n", psav);

}
else fprintf (xnew, "%s", q);

fclose (xsrc);

fclose (xnew);

if (!(pathbits & (DIRECTORY | DRIVE))) {
unlink (qold);
rename (gqsrc, qold);
rename (qnew, gsrc);

}

fclose (xmsg);

Jmsg++;

xhdr = fopen ("menuload.h", “w");

fprintf (xhdr, “char *txt[%d];\n", jmsg);
fclose (xhdr);

exit (0);
}

#ifdef MSC
/* this function is in the Turbo-C library */

int fnsplit (path, disk, dir, name, ext)
char *path, *disk, *dir, *name, *ext;

{

char bdisk[MAXDRIVE], bdir[MAXDIR], bname[MAXFILE], bext[MAXEXT];
char *cpl, *cp2;

register int i;

int result;

i=0;

cpl = strchr(path, ':');

if (cpl == NULL) cpl = &path[-1];

else for(; &path[i] <= cpl ; i++) bdisk[i] = path[i];

bdisk[i] = '\0';

cp2 = strrchr(path, '\\');

1=0:

if (cp2 == NULL) cp2 = strrchr(path, '/');

if (cp2 == NULL) cp2 = cpl;

else for(cpl++ ; cpl <= cp2 ; i++, cpl++) bdir[i] = *cpl;

bdir[i] = '\0';

for(i = 0, cp2++ ; ((*cp2)8&(i < 8)&&(*cp2!=".")) ; i+, cp2+) {
bname[i] = *cp2;

}

bname[i] = '\0';

for(i = 0 ; ((*cp2)8&(i < 4)) ; i++, cp2++) {
bext[i] = *cp2;

}

bext[i] = '\0’';

if (disk!=NULL) strcpy(disk, bdisk);

if (dir!=NULL) strcpy(dir, bdir);

if (name!=NULL) strcpy(name, bname);

if (ext!=NULL) strcpy(ext, bext);

result = (strlen(bdisk)) ? DRIVE : 0 ;
result += (strlen(bdir)) ? DIRECTORY : O ;
result += (strlen(bname)) ? FILENAME : O ;
result += (strlen(bext)) ? EXTENSION : O ;
return(result);

}

void fnmerge (path, disk, dir, name, ext)

char *path, *disk, *dir, *name, *ext;

: sprintf (path, "%s%s%s%s%s", path, disk, dir, name, ext);
iendif

/* End of File */

July 1993

Listing 2

txtload.c — Module to load message text into memory

/* compiles with MSC 4.0, TCC 2.0, or Watcom 386 8.0
* makefile sets MSC true when using MSC 4.0 compiler.
ol

#include <dos.h>
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <time.h>
#include <string.h>
#include <signal.h>
#include <stdlib.h>
#if _ TURBOC__
#include <mem.h>
#include <alloc.h>
#include <fentl.h>
#include <sys\stat.h>
#include <io.h>

felif MSC

#include <memory.h>
#include <malloc.h>
#include <fentl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#endif

#define MAIN 0
#include “"makemsg.h"

char nothing[] = "*;

#define MENBUFLEN 256

/* load messages into calloc'd array.
* typical usage:
unsigned cnt;
int error, line;
struct msg *txt[139];
FILE *menufile;
menufile = fopen("ROUTEMSG.TXT*,"r");
cnt = sizeof (txt)/sizeof (char *);
error = loadmsgs (cnt, txt, menufile, load, &line);
if (error) {
printf (“Error at line %d in ROUTEMSG.TXT.\n",
exit (EFORMAT);

line);

* return number of messages in *cnt.
* return error condition or 0 if OK.
*

/ /. wkkdkk | QOADMSGS *¥x¥x 1-/
int loadmsgs (cnt, arp, mfile, lod)
unsigned int *cnt;
struct msg arp[];

FILE *mfile;
int lod;
{

int j, k, row;

char 1buf [MENBUFLEN] ;

char bufr[MENBUFLEN] ;

int error=0;

int col=-1;

for (k = 0 ; k < *cnt ; k++) {
if (NULL == fgets (1buf, 128, mfile)) { *cnt = k-1; break; }

STOMP

even having to know it’s there,
MemCheck is a potent weapon in all
phases of development.

Toughen up against
bugs

And you can use MemCheck with C++
to keep your C++ apps in tip-top shape.

StratosWare Corporation |

July 1993

Discover how easy it is to stomp the
worst, most pervasive bugs in the C
language. With no source code
changes, and no special compiler
options, MemCheck is a rock solid
defense against a whole cadre of

common memaory errors.

Silent and deadly
MemCheck operates completely
automatically, interacting with the
developer only to pinpoint memory
errors by exact source file and line
number. Otherwise it as quiet as an
eagle on the wind. Without your

If you're seriously interested in writing E
i asy to use
ks :kost . tletC}: : Seamless ilﬂeg"ﬁ"n Developing reliable software is
you can, take a giant step to increase] lessly i : ¢
your productivity with MemCheck. MesCheric integrares eatly ineo challenging for the best of us. Using

your Windows or DOS C projects in 15
minutes. You'll pinpoint overwrites on
GlobalAllocs, LocalAllocs, and all linear
memory allocations supported by your
compiler (malloc, calloc, etc). Find
unfreed memory; heap corruption, and
more. Up to 30 times faster than other
debuggers trying to do the same things.

ADD EFFORTLESS REL

oo 800-WE-DEBUG
[Request 153 on Reader Service Card []

MemCheck brings big payoffs for novice | -
and expert alike in quality and time £
savings. But you be the judge—yoy
satisfaction is guaranteed. Call 1-

WER PACK $199
JOS version + any Windows version

. Check is worth its
" weight in gold.”

-- David Thielen, author of ‘NO BUGS:
Delivering Error-Free Code in C and C++

1-800-
WE-DEBUG

@\ WE USE AND SHIP QUALITY

Windows/DOS Developer’s Journal — Page 15

English versions. (The German word for “bus,” as in “electrical

Listing 2 continued bus,” is “verbindungsbiindel.”)

96 Summary
row = ato ut); . o
if (k!=row) { error++; break; } If you sell your programs to non-English speaking users,
if (k!=(col+1)) { error++; break; } : you should address the problem of communicating in their
col = row; /* save row for monotonicity check */ > i
memset (bufr,0,MENBUFLEN) ; language, if you haven't already done so. The module and
if (WLL == fgets (1buf, 128, mfile)) { error++; break; } program presented here should help you to modify your ap-
'hi1:1(=](::;|[r%];‘s3c£t (bufr, *\n*); plication so that it can load its messages from an external file,
if (1buf[0] == '\n') strcat (bufr, "\n"); which can then be translated into other languages.
“““{M[smen (1buf)-1] = *\000'; The code is designed to compile under three compilers:
strcat (bufr, Tbuf); y MSC 4.0, TCC 2.0, and Watcom 386 8.0. This work does not
} j consider the problems that arise with languages which need
) A8 DML Bt DtLTE0,. SIS gty S 16-bit characters, such as Chinese or Japanese. 0
/* now store message in bufr away */
if (1od) {

j = strlen (bufr);

arp[k].s = calloc (j+1, 1);

if(arp[k].s == NULL) {
fprintf(stderr,“can't alloc more memory, line Su\n",k);
return (ENOMEM) ;

/* for "Preparing a C application for non-English
* gspeaking users"

* William F. Dudley Jr.

./

}
strepy (arp[k].s, bufr);

else arp[k].s = ¬hing[0];

anplk], index = ki #define MAX_MSGS 10000

return (error); #if IMAIN
} : extern
/* End of File */ fendif

struct msg {

char *s;
unsigned index;
} txt[
#if MAIN
MAX_MSGS
#endif

iH

M b bbbt itolllblslledddddddddddddsddddddddddbd

/* End of File */

DefeCt Listing 4 makemsg makefile

management
ade easy

with

Defect Control

System

for Windows

$* is the target w/o suffix
MAKE_TMP = $(TMP)
0BJS = makemsg.obj txtload.obj setargv.obj

CC:= tec

-0 optimize TCC for size
set D=-v for TDebug
#D=-0

D=-v

TCC_OPTS = -mc $(D)
CC_OPTS = $(TCC_OPTS)

ASM = tasm

.SUFFIXES: .exe .obj .c .asm

.AFTER:
@ beep

The award-winning defect manager Call now for your free demo disk and Jc.obj:
that organizes and monitors bug product information: 719-508-3713 tcc $(CC_OPTS) -c $*.c
reports.
Robust query and report facilities .asm.obj:
help you deliver quality software $(ASM) /mx $*;
on time.
Notification features and change) makemsg.exe: $(0BJS)
histories keep your team informed. SOFrWARE‘= Iﬂ’ $(cc) g(cc_opys) -e$*.exe $(0BJS) setargv.obj

AR The Leader in Defect Management
Easy customization means DCS

won't change the way you work. 4420 Laven Way makemsg.obj : makemsg.c makemsg.h
Colorado Springs, CO 80920

% txtload.obj: txtload.c makemsg.h

[Request 174 on Reader Service Card [

Page 18 — Windows/DOS Developer's Journal July 1993

