Build a MIDI

FEATURE

ARTICLE

Bill Dudley

Sustain Pedal

Bill set out to take

care of the shortcom-
ings of his wife's
electronic keyboard
by building a MIDI

sustain pedal using a
68HC11 and C. Sit
back and enjoy the
performance as he
gets the hardware
and software in tune.

12 Issue 112 November 1999

his was one of
those projects that
sounds like a good
idea then quickly turns
into spending so much time building
the widget that you could buy ten
commercially manufactured widgets
for the money vou didn’t make while
building the project. But, it was more
fun than breaking rocks for a living.

My wife is a musician, a keyboard
player. One of her recent acquisitions
was a small, lightweight keyboard.
This keyboard was cheap s0 it didn't
provide for a sustain pedal.

Initially, Kate thought it would be
OK, but after a while, she de-

95; Jett’s MIDI series in Circuit Cellar
99--100), sc I won't spend time de-
scribing it, except to say that MIDI
stands for Musical Instrument Digital
Interface and defines a protocol and
physical medium for interconnecting
musical input devices [kevboards,
mostly) and musical output devices
{namely, synthesizers).

MIDI uses current loop as the
physical medium, the bit rate is
31,250 bps, and the messages consist
of packets of {typically} 1-3 byres.

[ designed and built this project
using some fairly high-powered tcols
and hardware to minimize develap-
ment time. Obviously, if this design
was going to be mass produced, you
could spend mere time in the design
phase and cram the design into a tiny
little microprocessor |e.g., a PIC).

Because I was making only one
unit, I optimized for short design
time. In this article, [ describe the
development process to show how
designs are done in larger companies
with reasonable tool budgets.

HARDWARE

First, I chose a microprocessor. 1
toyed with the idea of using an 8048
or a PIC, but since they have no inter-
nal serial port, I rejected them.

The MIDI data rate of 31,250 bps is
high enough so the timing would be
tight without a serial port o divide
the interrupt rate by eight. I also had
to deal with simultaneous input and
output streams, 8o a bit-banging serial

cided that a sustain pedal would
be nice. That’s when I spoke up.

+Bu-—

a sustain pedal. (pause) What's
a sustain pedal, anyway?” And
that's how this project started.
A sustain pedal, when
pressed, removes the damping
mechanism from the sound-
producing mechanism, so a
note will play until it decays
away naturally. In a piano, the
felt damping pads are lifted so
the strings do not stop oscillat-

ARIOH

“Sure honey, I can build you crEL 189

|

¥ Aftar programming
| EEPROM, remave MAX232
from sacket.

RL
L
tka To momentary
dal surt
po B V' H pedal suiten

Di, =
prafZt® W% pades bt undacstor
]
PadREetl B pesource Lock indicstor
., O3
pagREniE . pY padal palling ioar ancicatar
04
3
pag P2l ,5 Real time clock interrupt indacarar
-"_'_T’SU U1
EHi3E
Rz L3[UCE B3,
k2 als s g
Je.t i T e B
4 1. H=S) __r{\\
6o ¥ * usee _In
Lol il
5 MIDI :n
vpuBeEE oy £ B0
o P .
pidR.e AL A
Posplle s ha 283996 g 13
i ZzZau (N

)

cnpldE.28 5 e

2202 [ 3
HIDI aut

-

ing when the key is released.
MIDI has been the subject

of several articles (“Digital

Attenuators,” Circuit Cellar

CIRCUIT CELLAR®

Figure 1~This is ail the custom YO you need to convert the
B8HC11's seriaf port to MiDI. Because the MID! interface is a
cutrent loop, the MAX232 supplied on the Axion SBC is removed
when the MIDI interface is used.

www.circuitcellar.com




Listing 1—The m7 7 ( } task reads incoming MID! messages and copies them out again, locking the
MiDl-out resources when a MID! message is partially processed. The header fifes whose names begin
with a “c” (cclock . b, ele.} are generated by the RTXCGEN too! suppiied with the RTXC kernel.

#include "hardware.h"
#if K4

#include <fokd . h>
#else

#include <io.h>
#endif

#include "rixcapi.h®

#include "cclock. k" /* CLKTICK */
#include "cres.h” /* SCIRES */
#include "cqueue.h”

#include "csema.h"

#include "lcd.h"

#define SELFTASK ((TASK)O)
#define TMINT ((TICKS)S000/CLKTICK)

static const char hex[] =
{'er, 1, 2, '3, 4, b, e, 7, 0B, M9,
AT, BT, CCT, DT, RN, E Y
void xtoalunsigned int x, int len, char *s) {
sflen--3 = "\0";
while(len == () {
s{len--] = hex[x & 0x000f];
X >»= 4
}
}

char buf(4];

extern char unsigned minbuff], ihead, itail;
extern unsigned char porta;

static unsigned int inseq;

void midi{void}

{

unsigned char true, ichar, havelock;
true = 1;
havelock = inseq = 0:
init_ted();

gotoxy_lcd(l, 1);
cputs_lcd("ON ");
gotoxy_lcd(l, 3);
cputs_icd{"OFF ");
gotoxy_lcd(l, 1);
whilae(irue) {
KS_wait(SCIISEMAY:
while (itail != ihead) {
ichar = minbuf[itail++];
switch (ichar & Oxf0) {
case 0x90
buf[0] = '\O0";
inseq = 3;
gotoxy_lecdid, 1};
break;
case Dx80 :
buff0] = ‘\O';
inseq = 3;
gataxy_lcd(5, 3);
break;
case Oxad
case Oxb0 :
case Oxel :
inseq = 3;
gotoxy_lcd(l, 2};
goto Print;
case OxcO
case Oxd0
inseq = 2;
gotoxy_lcd{l, Z};
goto Print;
case Oxf0
switch(ichar) {
case Oxf0 : /* system exclusive */
inseq = Oxffff;

/* wait on input char */

port would have to handle interrupts
at a 62-kHz rate.

I've had a lot of experience with
the 6811 [1] and a little experience
with the 8051, so I went with what I
kknow. The only argument against the
6811 is that it's probably overkill for
this project, but remember, I'm opti-
mizing for development time, not cost.

T've used the 68HC11 CO and K4
variants on professional jobs, but they
have too much T/O capability for this
project. Besides, mail-order 68HC11
SBCs always use the A or the E part.
Good enough, we'll use the 68HCI11A.

After searching the ‘Net and look-
ing through the ads in Circuit Cellar,
I decided on Axiom’s CME11A SBC.
It has a 68HC1 1A microprocessor,
with a MAX232 and DE-9 hung off
the serial port, sockets for RAM/
ROM/EEPROM, onboard power-sup-

- ply regulator, plus an I/Q decoder and

header pins to connect an LCD mod-
ule and keyboard.

Axiom also sells a development
package that includes a wall-wart power
supply, serial-port cable to connect to a
PC, and software to compile and down-
load programs to the onboard EEPROM.

This package is handy for quick
demonstrations or prototypes. There’s
even a wire-wrap area on the CME-
11A so you can add some custom I/O.

The Axiom board’s built-in LCD
port makes it convenient to attach an
LCD module [2] that uses the Hitachi
44780 or equivalent LCD controller,
This setup allows a convenient dehug
message display from your embedded
system, which is useful if the target’s
only serial port is otherwise occupied.

TOOLS

When I'm building an embedded
system, I always start in C. f I run
out of room or real time, I'll drop back
into assembler, but generally that isn’t
necessary. ROM is just too cheap.

|Whenever I've started an embed-
ded project in industry, I've always
designed in the current “popular”
ROM size, with a way to expand to
the “cutting edge” size ROMs. Every
time, without exception, by the time
the project hits production, the ROM

continued,
(continued) T designed in is almost obsolete, and

— I c.c “big” ROM is the defaull size,

www.circuitcellar.com CIRCUIT CELLAR?

Issug 112 November 1399 13




and there’s a much bigger one avail-
able that won’t fit in the socket I
designed. You’d think I'd have learned
Moore’'s law by now.}

The C compiler I use is from Cos-
mic Software. It generates excellent
code and comes with a reasonable
subset of the standard C library.

There’s a command-line version and
a GUI version. I'm strictly a command-
line kind of person. T just want to type in
my C code, type make, and go get a Jolt.

Make is portable across all the
systems I use {Berkeley Unix, Linux,
DOS). So, I don't have to change the
way I work even as [ move from com-
puter to computer during the day.

The next wonderful tool is an emu-
lator. The crash-and-burn develop-
ment cycle can get tedious, especially
when nothing’s running so you can’t
even run a debugger on the target.

An emulator lets you quickly see
that your stack pointer is pointing to
nowhere. Then, once you get the little
sucker running, the emulator provides
a profiler, instruction trace, complex
breakpoints, and the ability to exam-
ine or change the registers or memory.

My Nohau emulator lives in a box
the size of a toaster, communicates
with a PC running DOS/Windows,
and has a cable ending in a pod which
plugs into the target in place of the
microprocessor chip. Nohau-supplied
goftware runs under Windows and lets
you contro} the emulator. You can
load code, set breakpoints, examine or
change registers, and run your code.

This emulator has real-time full-
speed trace of the target’s execution and
a performance analyzer to help figure
out where the code is spending its time.

SOFTWARE

1 decided this project needed an
RTOS so I could have multiple tasks
running independently without writ-
ing this complexity myself. I went
with RTXC from Embedded Systems
Products. It comes with complete
source code and is customized for the
particular microprocessor you're using.

The RTXC kernel supplies all
needed (and even imagined) kernel
services—that is, manipulation of
mailboxes, semaphores, resource locks,
gueues, dynamic tasks, and so on.

14 lssue 112 November 1999

e

Listing 1—continued

gotoxy_led(l, 4);

case Oxfc /% stop */

}
cputs_lcd{buf};
if(thavelock) {
KS_tockw(SCIRES);
havelock = 1;

}

porta |= SCIRESBIT:

PORTA = porta;
KS_enqueuew(SCIO0Q, &ichar);
ifl(inseg) inseq--;

iflinseq == 0} {

porta &= ~SCIRESEIT;

PORTA = porta;
KS_unlock{SCIRES};

havelock = 0;

One of the nice parts about this
tool set is that the three vendors—
Cosmic, Nohau, and Embedded Sys-
tems Products—communicate with
each other. For example, the emulator
knows about the symbol table output
by the compiler. The compiler works
correctly with the kernel. And the
kernel’s internal tables and variables
are understood by the emulator.

THE TASKS

This project needs at least two tasks.
The midi{} reads the incoming MIDI
stream from the keyboard and copies it
out to the next device in the chain (typi-
cally, a synthesizer). The pd1pol1(}
task polls the state of the I/O pin con-
nected to the sustain pedal and trans-
mits a pedal-state message when it
detects a change of the pedal’s state.

CIRCUIT CELLAR®

goto Print;
case Oxf2 : /* song pos */

inseq = 2;

gotoxy_lcd{l, 4);

goto Print;

case Oxf3 : /* song sel */
case Oxf6 : /* tune req */
case Oxf7 : /* end of sys excli.*/
case Oxf8 = /* timing cleck */
case Oxfa : /* start */

case 0xfh :  /* continue */

case Oxfe : /* active sensing */
case Oxff : /* raset */
default : /* undefined: f1 f4 5 f9 fd */

inseq = 1;

gotoxy. lcd{l, 4);

goto Print;

}
defauit :
Print:

xtoa({unsigned int)ichar, 2, buf);
buffz] = ' *; :
buf[3] = "\0;
break;

The midi() task listens to the
MIDI input from the keyboard and
copies whatever it sees to the MIDI
output [serial output queue}. More
importantly, when midi{)copies a
MIDI message this way, it acquires a
resource lock on the serial port quene,
so it has exclusive access to this queue.

The midi() task in Listing 1 consists
of an event loop that waits for a sema-
phore from the serial port interrupt
handler, indicating that a character
was received. A while loop empties
the queue of received characters and
feeds them into a switch statement,
which classifies the MIDI messages by
length, based on the first characeer and
controls the display on the LCD module.

The integer variable inseq moni-
tors the length of the MIDI messages.
It is set to the length of the message

www.circuitcellar.com




at the start of each MIDI message, and
it is decremented for each subsequent
character in that message.

When midi(} sees the last byte of
a MID] message (signified by inseg
reaching 0), it releases the resource
lock on the serial-port queue so other
tasks may use the serial port.

pdlpol1(), shown in Listing 2,
regularly polls a pin on the 68HC-
11A’s parallel port A. When that bit
changes state, it means the pedal was
pressed or released,

The pd1pol17{} task then waits for
the resource lock to be free, grabs the
lock, stuffs the appropriate message
into the serial port output queue {pedal
up or down)}, and réleases the lock,

If you're wondering why there
needs to be a task to read MIDI in and
copy it to the output, the answer lies
in the fact that MIDI messages are
multibyte packets. If the pedalpol1()
task just blindly shoots out pedal-
state messages, it will eventually send
one in the middle of a MIDI “note on”
or “note off” message from the key-
board. This will cause both messages

to become garbled, and the synthe-
sizer will throw away one {or both) of
the messages as corrupt.
So, the purpose of
the midi() task is
to read and under-
stand the MIDI
stream from the key-
board. That way, it
knows when it’s safe
for pedalpall() to
send a pedal state
message without inter-
rupting a keyboard message.
midi() uses the resource
lock on the serial-port queue to
let pdipol1() know what times it
is safe to send pedal state messages.
A third task—a device driver for
the serial (MIDI} output—empties the
serial port queue and sends the char-
acters to the serial port transmit
buffer register when an interrupt from
the serial port transmitter indicates
that the transmit buffer is empty and
ready for another character. By using a
semaphore, RTXC ¢nables interrupt
handlers to notify tasks of events.

Photo 1-=The DE-2 connector
15 only used for programming

the flash memory and so is not
accessible when the cover is in
place. All my custom MID! O
circuitry is on the tan perfboard
in the back right comer. Power is
supplied via a walf wart.

INTERRUPT HANDLERS

As I mentioned, one of the inter-
rupt handlers is devoted to the serial
port interrupt. The 68HCI1 has a
whole slew of vectored interrupts, so
it’s easy to set up a different handler
for every peripheral device that can
generate an interrupt. When the built-
in serial port of the 68HCI11 receives
or transmits a character, an interrupt
is generated.




Your 1/0
Budget

Flashlite 386Ex

start af

S219 qty 1.

+ 25MHz
+ 512K Flash

« 256 or 512K Ram

« DiskOnChip Support to 144MB
« 30 Parallel /O lines

+ 2 PC Compatible Serial Ports
¢ Clock Calendar & Watchdog

= LCD & Keypad Drivers

Multi-l/'O
start at

$99 qty 1

* 4 or 8 Channel 12 Bit A/D

* 2 or 4 Channel 12 Bit D/A

+ 4 or 8 1A Relay Drivers

+« 0or1or2High Speed UARTS

» Software drivers included for C,
QuickBasic & Assembly.

» Expands easily for demanding
applications.

386Ex with Multi-l/O

Development Kit  $429
Includes Flashlite 386Ex 512K,
Multi-l/O 4241, Borland C/C++,

Sample Code, Drivers, & more.

Call 530-297-6073

Fax 530-297-6074
1902 East 8th St., Davis, CA 95616
for more information see our site

www.jkmicro.com

JK micros ys_tém_s_

18 Issue 112 November 1999

The handler reads the status regis-
ter then responds to each of the pos-
sible interrupt sources. If a character
is received, it is read and stored in a
(global] buffer, And, a semaphore is

set to notify midi () that a new char-
acter is available to be read.

If the transmit buffer-empty inter-
rupt has fired, a different semaphore is
set to notify the serial cutput device

Listing 2—The pdlpoll() task polis the pedal switch, and when it detects a change in pedal state,
walts for the MIDI output resource lock before sending the appropriate MID! pedal message.

#define SELFTASK ({TASK)O0)
#include "hardware.h"

#if K4

#inciude <iokd.h>
#else

#include <io.h>
#endif

#include "rtxcapi.h”
#include “scidrv.h”
#include "csema.h"
#include “cqueue.h™
#include "cres.h"
#include "serial.h”

#define POLLED 0

static unsignad char ped, lastped;
unsigned char porta;

void pdipoll(void)

{

unsigned char i;
unsigned char pedalsex;

#iT Ka

DDRA = Dx78;
#endif

porte = 0x60;

lastped = PORTA & PEDALBIT;
pedaisex = PEDALBIT & lastped;
if(lastped) porta &= ~PLEDBIT;

else porta |= PLEDBIT;
PORTA = porta;
for (i3} {

KS_delay (SELFTASK, 2};
porta “= PDLPOLLBIT;
PCRTA = poria;
ped = PORTA & PEDALBIT;
#if POLLED
monitor();
#endif
if(lastped != ped) {
if(ped) porta &= ~PLEDBIT;
else perta |= PLEDBIT;
lastped = ped;
ped *= pedalisex;
KS_Tockw(SCIRES);
porta = SCIRESBIT;
PORTA = porta;
for{i =0 ; 1 <3 ; i++)} {

}

porta &= ~SCIRESBIT:
KS_unlock(SCIRES);
PORTA = porta;

CIRCUIT CELLAR®

KS_enqueuew(0Q, {ped) ? &downmsgl[i]

/* COMISEM, COMOSEM */
/* COMIQ,

COMOQ =/

static const char downmsg[] = { Oxb0, CGx40, Ox7f };
static censt char upmsg[] = { OxbQ, 0x40, 0xQ0 };

/* poll for pedal change of state, when detected, send pedal message
* {with resource lock to prevent message scrambling)., */

/* make it Took like the port on a non-K4 */
/* guess if switch is N.C. cr N.Q, */

/* look at initial state of. pedal */

/* correct for N.C. or N.C. pedal */

+ &upmsglil);

www.circuitcellar.com




driver task that the serial port hard-
ware is ready for another character.

The second interrupt handler runs
on the real-time clock interrupt of the
68HC11. This interrupt is scheduled
to fire every 5 ms or so, and is used as
a heartbeat by the RTXC kernel.

The kernel gets control at every real-
time clock interrupt, when it checks to
see if any task with a higher priority
than the currently running task has
become available. If so, a task switch is
performed. Otherwise, the kemel re-
tums control to the current task.

RAMPANT FEATURE-ITIS

Because a2 pedal is just a momentary
switch, some keyboard manufacturers
use normally closed switches and
others use normally open switches.

My MIDI sustain pedal box would be
ambidextrous. So, pd1pol1 () checks
the initial state of the pedal when the
software starts up. If the pedal pin is at
2 high logic level, the pedal is assumed
to be normally open. Otherwise, it 18
assumed normally closed.

This information is then used
when generating the pedal state mes-
sages, to generate the correct ipedal up
or down) message regardless of which
pedal you plug into the device.

Besides the two five-pin DIN con-
nectors for MEDI in and out, and the %4
phone jack for the pedal connection,
four LEDs are mounted on the front
panel. These are driven by software
events so | can monitor the unit's
health. They started out as debugging
aids, but they looked so pretty when
running that I left them on the fromt
panel of the finished device.

One LED toggles when the real-
time clock interrupt fires. Another
one shows the state of the pedal con-
tact. A third shows the resource lock
activity on the serial output queue.
The fourth toggles at the frequency of
the pd1po11() polling loop.

INTERESTING COINCIDENCE

I had the project just about done
when a friend showed me an article
entitled “PIC MIDI Sustain Pedal” (3].
Naturally, [ was intrigued.

This article solves the easier prob-
lem by generating MIDI pedal state
messages. However, it assumes the

www,circuitcallar.com

keyboard and synthesizer are in one
unit so they don’t need to insert the
pedal messages into the keyboard's
MIDI output stream.

This application is simple enough
for a PIC. It only has to poll the pedal
contact bit and grind out serial mes-
sages—not read any MIDI stream so it
can coordinate with it.

Although my MIDI box wasn't a
cost-effective project to build, it cer-
tainly was entertaining and allowed
me to showcase some fine tools. @

Bill Dudley is a programmer for
Monmouth Internet. He has designed
embedded systems for the likes of
ATe)T Bell Labs and a whole assort-
ment of much smaller companies.
When not hacking around on comput-
ers he can sometimes be found riding
one of his motorcycles. You may
reach him at dud@casano.com,

[1! Motorola, M68HC11 Reference
Manual M68HC11RM/A, Rev. 3,
1991.

9] Optrex, LCD module, Datasheet.

[3] R. Penfold, “PIC MIDI Sustain
Pedal,” Everyday Practical Elec-
tronics, Feb. 1999.

68HCI11A SBC
Axiom Manufacturing
(972) 994-9676

Fax (972) 994-9170

Www.axman.com

68HC11 emulator
Nohau Corp.

(408} 866-1820
Fax (408) 378-7869
www.nohat.com

68HC11 C compiler
Cosmic Software

(781) 932-2556

Fax: (781) 932-2557
www.cosmic-software.com

RTXC kernel

Embedded Systems Products, Inc.
(800) 525-4302

[281) 561-9990

Fax: (281) 561-9980
WWW.Itxc.com

CIRCUIT CELLAR®

REDUCED PRICE!
185 Wait Power Supply

Compagq # 172417-002 (172432-001)
Input: 120/ 240 Vac (switchable)
DC outputs: +5V @ 18A, +3.4V @ 12A, +12V
@ BA, -5V @ 0.15A,-12V @ 0.15A.
Size: 6.5" X 5.75" x 3.85" Buili-in fan, On/off
switch on 20" lead. Power cord not included.
UL, CSA.

50

CAT # PS-185 $ £ ocn

‘Snap-In Capacitor

560 UF 400 Vdc -

NICHICON CE

85° C LQ (M).

1.39" dia. X 1.83°n. 0.47 lead sp.
CAT# EC-5640

10 for $3.75 each $ 00 i

100 for $3.00 each ‘each

‘Touchtone Keypad

Farbelli# DU200P (A). Standard
12 butten telephone keypad
with touchtone {DTMF) circuit-
ry. Field replacement for d
some QTE payphones. @
White plastic buttons with [ 15
black numerals and let-
ters. 11 color-coded ;!
leads, 9" long with spade

fugs.
"0 CAT # KP-11 00
% can

ORDER TOLL FREE

1-800-826-5432

CHARGE ORDERS to Visa, Mastercard,
American Express or Uiscover

TERMS: NO MINIMUM ORDER. Shipping and handling for the
48 continenta! U.S.A. $5.00 per crder, All others including AK,
Hi, PR or Canada must pay full shipping. All orders delivered
in CALIFORNIA must include local state sales tax. Quantities
Limited. NO COD. Prices subject

CALL, WRITE 1o changa without nolice.

EAX or E-MAIL MAIL ORDERS TO:
tor our FREE WARNSRS el 103
96 Page CORPORATION

CATALOG P.0. Box 567
ARSI Van Nuys, CA 91408
send $3.00 postage-

FAX (818)781-2653
www.allelectronics.com

e-mail allcorp@allcorp.com




